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What Drives the Surface Freezing in Alkanes? a relation found to correlate nicely with the Hamaker con-
stant for various small molecule liquids [9]. However, this
In a recent letter [1] Tkachenko and Rabin (TR) sug-has never been shown to hold for theleredphases of the
gested that the crystalline monolayer observed [2] to formalkanes and, in fact, the electron-poor “depletion region”
at the surface of molten alkanes at a temperafiyfer  between the layers [3] shoutdducethe Van der Waals at-
AT, of up to a few°C above bulk meltindT,,), is en-  traction in the crystal phases relative to the uniform-density
tropically stabilized by fluctuations along the axis of theliquid state. Furthermore, even, (7) does not scale with
molecules. Such fluctuations are indeed significant in thg?, since its significant entropic component is comparable
bulk rotator phases [3], and probably represent the entropi® its enthalpic component [5].
component of its interfacial tensions neglected by TR. We The finite thickness correctiof; is the difference be-
show here that some of TR’s assumptions are incorreaiveen two quantities: (1) the disorder of a single mono-
and surface crystallization is expected purely on the basigyer in contact with vapor and liquid and (2) the sum of
of the interfacial tensionsy in units of mMN/m) of semi-  the disorder of an outermost layer of a semi-infinite crys-
infinite bulk. tal in contact with the vapor phase and one in contact with
Formation of a solid layer at the surface of a liquid the liquid phase. TR computed only the first, thus overes-
entails creation of solid-liquid and solid-vapor interfaces,timating A;. Much of their calculated\, is therefore the
with energy costyy + vy, and the elimination of a surface excess entropy for the solid-liquid and solid-vapor
liquid-vapor interface with an energy gain ¢f,. This interfaces which are already includedyip andy,,. This,
will occur only if a net energy gain is realized, i.g4, —  combined with unrealistically high values f, andy,
(yst + vsv — Ay) > 0. The vy, which include an en- coincidentally predict the surface crystallization.
tropic component, are defined for surfaces of semi-infinite We have shown that the low energies of the £H
bulk. Therefore, for the above condition to be rigorouslyterminated crystal face can cause surface crystallization,
correct, the finite thicknesv(layers) of the surface crys- and demonstrated a need, and a new method, for a more
tal requires that a termdy be included to account for complete chain-length and temperature determination of
any enthalpic or entropic interactions of the two interfaceshe individual y,,, v,, and A;. The recognition by
(Ay — 0asN — =). As pointed out by TR, the observa- TR of the importance of longitudinal freedom and their
tion [2] of only a single monolayefN = 1) implies that  calculation is an important step along that road.
A; = 0. Inthe simple approximation of surface-localized
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